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ABSTRACT
Spatiotemporal point process models have a rich history of effec-
tively modeling event data in space and time. However, they are
sometimes neglected due to the difficulty of implementing them.
There is a lack of packages with the ability to perform inference for
thesemodels, particularly inpython. ThuswepresentBSTPPapython
package for Bayesian inference on spatiotemporal point processes.
It offers three different kinds of models: space-time separable Log
Gaussian Cox, Hawkes, and Cox Hawkes. Users may employ the pre-
defined trigger parameterizations for the Hawkes models, or they
may implement their own trigger functionswith the extendable Trig-
germodule. For the Coxmodels, posterior inference on the Gaussian
processes is sped up with a pre-trained Variational Auto Encoder
(VAE). The package includes a new flexible pre-trained VAE. We val-
idate the model through simulation studies and then explore it by
applying it to shooting data in Chicago.
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1. Introduction

Spatio-temporal event data analysis is a critical!eld of study focused onunderstanding pat-
terns, dependencies, and dynamics of events distributed across space and time [5,8,11,29].
This type of analysis combines spatial and temporal dimensions to explore phenomena
such as earthquake occurrences, crime incidents, disease outbreaks, and social interac-
tions. By modeling the interactions between where and when events occur, researchers
can uncover underlying processes driving the events, predict future occurrences, and
inform decision-making in !elds like urban planning, public health, and environmen-
tal management [5,8]. Spatio-temporal event data presents unique challenges due to its
complexity, requiring specialized methodologies and computational tools that integrate
spatial statistics, temporal modeling, and machine learning [29]. These approaches aim to
provide actionable insights into complex systems by capturing intricate spatio-temporal
dependencies and o"ering explanations for observed phenomena [2,24].
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However, these methods are not always employed because of their complexity and lack
of practical implementations. For example, Spatial Event Aggregation (SEA) methods are
commonly used to analyze con#icts in space and time. Such methods, in which events
are aggregated on spatial units and then regression is performed on the resulting counts,
may lead to erroneous conclusions because of the simplicity of the assumed mechanism
[19,31]. One of themain problems identi!edwith themethodology is that it ignores spatial
di"usion and correlation of violent events, and it also does not account for non-uniform
sizes of spatial units. Self-exciting point processes address both of these concerns, but are
more di$cult to implement due to a lack of available software packages and knowledge on
the topic.

The availability of Python packages for spatio-temporal point process analysis remains
signi!cantly limited, re#ecting a gap in the current ecosystem of data science tools. While
several libraries such as tick and hawkeslib o"er functionalities for temporal point pro-
cesses, they lack the capability tomodel spatial dependencies [1]. Similarly, spatial analytics
libraries like pySal and its pointpat module focus exclusively on spatial point patterns,
leaving the temporal dimension unaddressed [30]. This lack of integrated tools poses chal-
lenges for researchers and practitioners aiming to analyze complex phenomenawhere both
spatial and temporal interactions are critical, such as the spread of diseases, urban crime,
or ecological dynamics. The absence of dedicated Python libraries that seamlessly handle
spatio-temporal point processes limits the ability to develop, test, and apply advancedmod-
els in this !eld, necessitating either custom implementations or reliance on less accessible
software platforms. Addressing this gap would signi!cantly enhance the accessibility and
scalability of spatio-temporal point process analysis across diverse application domains.

There are more R packages for spatiotemporal point data. The R package stpp is use-
ful for spatiotemporal point process analysis, but it does not do inference for any models
[10]. stpphawkes does Bayesian inference but only for temporal processes with spatial
marks [36]. The package starvemodels spatiotemporal point data using a nearest-neighbor
Gaussian process, but does not model self-excitation [18].The R package stopp can !t spa-
tiotemporal Log Gaussian Cox Processes and a particular spatiotemporal Hawkes process
known as ETAS [7]. stlnpp provides !rst and second order summary statistics and inten-
sity estimates for spatiotemporal point processes on linear networks [25]. Themost similar
package to BSTPP is an R package called stel! [15]. It has the capability to !t the ETAS
model with Gaussian random !eld background and a Log Gaussian Cox Process with
covariates and marks. However, the self-exciting model does not allow covariates and the
trigger function is strictly set as exponential in time and Gaussian in space. As will be seen
later, the trigger function can make a big di"erence in the quality of the !t. Further, it
performs maximum likelihood estimation rather than Bayesian inference.

Because of the scarcity of software packages, it can be tempting to go the easier route
and perform spatially aggregated Poisson regression. BSTPP1 !lls this gap by providing an
interface for Bayesian inference. Now available on PyPi, it hasmany advantages, including

• Easy to use interface for inference and simulation on three di"erent models: Hawkes,
space-time separable Log Gaussian Cox, and Cox Hawkes.

• Two di"erent methods of posterior sampling (MCMC and SVI for speed).
• High quality plots and model interpretation.
• Spatial covariates for the Cox Hawkes model (a novel addition to this model).
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• User-de!ned trigger functions.
• Ability to use geospatial boundaries or simply set boundaries via an array.
• Powerful pre-trained VAE for fast inference.

BSTPP is built on top of numpyro [3,27] for posterior sampling, GeoPandas [16] for
accommodation of spatial data, and matplotlib [14] for visualization.

The paper is organized as follows: !rst we describe the mathematical details of the three
models covered in BSTPP, then we show its success by a simulation study, and !nally
analyze its application to a dataset involving shootings in Chicago.

2. Models

Point process models describe and predict events occurring in a continuum [35]. The
events are idealized as points in that continuum. In this paper, we are interested in the
space-time continuum, so the points are space-time points. A spatio-temporal point pro-
cess is amathematicalmodel used to describe events that occur randomly in both space and
time. Formally, it is de!ned as a random set of points {(si, ti) : i ∈ N}, where si ∈ Rd repre-
sents the spatial location of the ith event in a d-dimensional space, and ti ∈ R+ represents
its occurrence time. The process is typically described by its conditional intensity function
λ(s, t | Ht), which quanti!es the instantaneous rate of events occurring at location s and
time t, given the history of events up to time t, denoted asHt [5,8].

Mathematically, the conditional intensity function is expressed as:

λ(s, t | Ht) = lim
"s,"t→0

P(An event occurs in [s, s + "s) × [t, t + "t) | Ht)

"s · "t
.

where s is a given spatial point,"s is an in!nitesimal change in space, t is a given temporal
point, "t is an in!nitesimal change in time, P(· | Ht) is the conditional probability given
the historical eventsHt .Ht is only included if the point process is self-exciting, meaning
that previous event occurrences impact future event occurrences. We will omit theHt for
the rest of the paper for notational simplicity. See [29] for a more full explanation of self-
exciting spatiotemporal point processes.

The simplest case is the homogeneous Poisson process, where λ(s, t) is constant, imply-
ing that events occur independently and uniformly over space and time. Extensions include
inhomogeneous Poisson processes, where λ(s, t) varies with s and t, and self-exciting processes
like the Hawkes process, where the occurrence of one event increases the likelihood of
future events in its spatio-temporal vicinity [2,29].

Applications of spatio-temporal point processes include seismic modeling (e.g. ETAS
models) [26], crime pattern analysis [24], and the spread of infectious diseases [21]. These
models enable the estimation of event likelihood, identi!cation of clusters, and predic-
tion of future occurrences based on historical data, providing invaluable tools for both
theoretical research and practical decision-making.

BSTPP is capable of doing inference using three di"erent kinds of point process mod-
els: Log Gaussian Cox processes, Hawkes processes, and Cox Hawkes processes. We also
included a discussion of SAE models for comparison even though it is not included in the
package.
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2.1. Log Gaussian Cox process

The Log Gaussian Cox Process is a doubly stochastic model [9]. The spatiotemporal data is
generated by an inhomogeneous Poisson process with intensity λ(s, t). For a full explana-
tion of PoissonProcesses see [35, Chapter 2].λ itself, however, is stochastic. It is determined
by the exponential of a realization of a Gaussian process, fst(s, t). The intensity of the
process is shown in the following equation,

λ(s, t) = exp
(
fst(s, t)

)
. (1)

In the particular model used in this package, the spatial and temporal parts of the Gaussian
process are assumed to be independent and hence wemake fst separable in space and time.
Often researchers are interested in the e"ects of covariates on the likelihood of an event to
occur. For example, we would like to answer questions like, ‘Does high median income in
a community area in Chicago make it less likely for a shooting to occur?’ To answer these
kinds of questions and also give additional explanatory power to the model, we included
spatial covariates in the model with a similar setup to regression.

λ(s, t) = exp
(
fs(s) + ft(t) + Xᵀ(s)w + a0

)
. (2)

Here ft and fs are zero mean Gaussian processes of one and two dimensions respectively,2
X(s) is the spatial covariate vector of dimension p, w is a vector of learnable weights of
length p that models the linear e"ect of the spatial covariates on the intensity, while a0 is a
constant bias term (intercept) that captures the magnitude of the intensity independent of
time and location.

In practice, the Gaussian processes are approximated by piecewise constant Gaussian
random variables on a computational grid because Gaussian processes are theoretically
in!nite-dimensional. We refer the reader to [28, Chapter 2] for details on Gaussian
processes and their properties. For the spatial dimension, this is a two-dimensional
computational grid, while the temporal dimension only needs a one-dimensional vector.

2.2. Hawkes process

A spatiotemporal Hawkes process is a self-exciting point process which is fully de!ned by
its intensity which admits the following form,

λ(s, t) = µ(s, t) +
∑

i:ti<t
g(s − si, t − ti). (3)

where si is the spatial point for the ith observation, ti is the temporal point for the ith
observation, and µ and g are functions. µ is called the background function and g is
called the trigger function. The interpretation of the intensity form is that events arise
either from the background or from the triggering kernel. The initial event comes from
the background. Subsequent events are generated from either the background or from the
triggering kernel. Background events are called immigrant events whereas triggered events
are called o"spring [29]. The names arise from a common analogy in which, aHawkes pro-
cess describes the population of a country. Background points correspond to immigrants,
while triggered points correspond to the descendants of immigrants. The expected num-
ber of o"spring generated by an individual is called the reproduction rate. It is important to
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note that a reproduction rate greater than 1 would result in uncontrolled growth. Restrict-
ing the reproduction rate to be below 1 would ensure non-explosivity of the process. The
default trigger function for the package is parameterized as follows,

g(s, t) = αf (t;β)ϕ(s; σ ). (4)

where α is the reproduction rate, f is the exponential probability density function with rate
β , and ϕ is the Gaussian probability density function with mean 0 and standard deviation
σ . Thus the time between parent and triggered events is exponentially distributed, while
the triggered point is normally distributed in space centered around the parent point.

BSTPP allows other trigger parameterizations also. The power law temporal decay is
included in the package: f (t;β , γ ) = βγ β(γ + t)−β−1, where β and γ can range from 0
to∞. The package also includes the ability for the user to de!ne their own trigger functions
by extending the Trigger module. At this time, all user-de!ned trigger functions must be
separable in space and time. The general form is g(s, t) = αf (t; θ1)h(s; θ2), where θ1 and
θ2 are the parameters for the temporal and spatial components of the trigger intensity,
respectively.

For the background rate, we use a spatial regression similar to the one in the previous
section.

µ(s, t) = Xᵀ(s)w + a0. (5)

2.3. Cox Hawkes

The !nal model is a combination of the previous two models: the Hawkes model with Log
Gaussian Cox as the background process as initially introduced by [22].

λ(s, t) = exp
(
a0 + Xᵀ(s)w + fs(s) + ft (t)

)
+

∑

i:ti<t
αf (t − ti;β)ϕ(s − si; σ ). (6)

Again, the full version of the model includes spatial covariate regression. The Hawkes part
models the triggering of events, while the Cox backgroundmodels the clustering of events.
This is the most powerful model in BSTPP.

To illustrate this model we will use the example data of shootings in Chicago. Some
areas aremore likely to have shootings because of various factors such as gang presence and
population density. This is the clustering e"ect and can be modeled by the Log Gaussian
Cox process with spatial covariates. Retaliatory shootings on the other hand aremore likely
to occur shortly after and near a recent shooting. This is the triggering e"ect modeled by
the Hawkes process. Neither of these models separately can account for both e"ects, which
is the motivation for including the Cox Hawkes model.

2.4. Spatial event aggregationmodel

Although spatial event aggregation (SEA) regression is not a part of BSTPP, it is discussed
for comparison because of its popularity. The SEA regression model is a statistical frame-
work used for analyzing and modeling aggregated event data over a spatial domain. This
type of model is particularly useful in scenarios where the spatial locations of events are
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observed, but the events are aggregated into regions (e.g. grid cells, administrative units)
rather than being recorded as precise point locations.

SEA models the relationship between the aggregated counts of events and a set of
explanatory variables (covariates), such as demographic, environmental, or economic fac-
tors, that vary across the spatial domain. SEA regression typically uses a generalized linear
model (GLM) framework. For count data, a Poisson regression or Negative Binomial
regression is often employed. The expected event count is linked to the covariates through
a log-linear or similar link function.

Spatially aggregated Poisson regression may be regarded as a point process model. It is
an inhomogeneous piece-wise constant Poisson process. This method ignores all spatial
correlation between the spatial regions. It also ignores any self-excitation present in the
data and assumes temporal homogeneity. If T is the length of the time over which the data
were observed, then the spatiotemporal intensity for the SEA model can be written as,

λ(s, t) = exp
(
Xᵀ(s)w + a0

)
/T. (7)

3. Bayesian inference

The user may de!ne the prior for each parameter by using numpyro distributions. Priors
are speci!ed at model instantiation. For example,

1 model = Hawkes_Model(data[’events_2022’],
2 data[’boundaries’], cox_background=True,
3 alpha = dist.Beta(20,60),
4 beta = dist.HalfNormal(2.0),
5 sigmax_2 = dist.HalfNormal(0.25),
6 a_0 = dist.Normal(1,10)
7 )

sets the priors for α, β , σ 2, and a0. There is a default prior for w: w ∼ N(0, 1). As with
anyHawkes process, inference can be computationally complex. Forn observed data points
over the spatial region of A with model parameters θ , the log likelihood of a point process
model is given by,

)(θ) =
n∑

i=1
log (λ (si, ti; θ)) −

∫ T

0

∫

A
λ (s, t; θ) ds dt. (8)

For a Hawkes model, evaluating the likelihood is typically an O(n2) operation because
evaluating the intensity function at any given point is O(n) due to the summation and the
intensity is evaluated n times. A Coxmodel has cubic complexity due to matrix inversions.

In order to speed up inference for the Log Gaussian Cox and Cox Hawkes models, we
employ pre-trained Variational Auto-Encoders (VAE) for the prior on the Gaussian pro-
cesses (fs and ft) (see [33] for more details on the method as well as [23]). Following [22],
we used a 25 × 25 computational grid for the spatial process and a length 50 computational
vector for the temporal process.

Semenova et al. [33] provided a pre-trained VAE to approximate a Gaussian process
prior. The spatial Gaussian process was trained to encode hyperpriors on length and scale
for a Gaussian kernel for the covariance (the mean is set to zero). These hyperpriors were
not expressive enough, however. The hyperprior for the scale parameter, which determines
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how #at the Gaussian process will be, was Log Normal with a mean of 0 and a variance
of 0.1. To check whether this is reasonable, we ran a kernel density estimate of the spa-
tial intensity (ignoring time) for Chicago shootings with bandwidth chosen by Silverman’s
rule of thumb [34] for simplicity. For more sophisticated methods of bandwidth selec-
tion for point process learning, please refer to a nice recent work [6]. This showed the log
intensity had a range of approximately 11. The given hyperprior for scale simply could
not account for this amount of spatial variance in the intensity. Further, the hyperprior for
the length parameter (l ∼ InverseGamma(4, 1)) was not expressive enough: it would over-
smooth the intensity function causing the background intensity to be under-!t. The result
was a very high α for the Cox Hawkes model, meaning that the background could not be
fully captured by the VAE and that some of the inhomogeneity in the intensity was falsely
attributed to self-excitation. To remedy this, we created a larger VAE with more expres-
sive hyperpriors: l ∼ InverseGamma(15, 1) and σ 2 ∼ LogNormal(2, 0.5). The pretrained
model is included in the package. If a user desires to train their own VAE, a training script
is also included.

In our implementation, evaluating the log likelihood isO(n2) inmemory. It is important
to keep this in mind when modeling large datasets.

Posterior inference is performed by numpyro. We o"er two kinds of inference for the
model. MCMC sampling is performed by the state of the art Hamiltonian sampler NUTS
[13]. The second kind of posterior inference, Stochastic Variational Inference or SVI, is
an approximation. SVI proposes a distribution, called the guide, and then optimizes the
parameters of the guide tomatch the true posterior aswell as possible [12]. The advantage is
that solving this optimization problem ismuch faster than actually doingMCMCsampling.
We chose a multivariate Normal distribution as the guide. In our experience, once SVI is
fully converged for these models, the results are almost indistinguishable from MCMC
sampling. In order to stay consistent with MCMC sampling, we draw samples from the
guide after training. These samples are then used in the posterior plots.

4. Simulation study

In this section we discuss the simulation capabilities of BSTPP and use them to test the
most powerful model in BSTPP: Cox Hawkes. We validate the methodology through the
comparison of posterior results from simulated data and known parameters. Then we
demonstrate the usefulness of the model by comparing the posterior sampled data with
the actual data.

For the methodology validation, we simulated a Cox Hawkes process with spatial
covariates. The parameters were set as follows: reproduction rate at α = 0.25, tempo-
ral exponential decay parameter at β = 2.0, and spatial trigger variance parameter at
σ 2 = 0.0025. The three spatial covariates were randomly generated from a standard Nor-
mal distribution on a 10 × 10 grid and three corresponding weights were also generated
from a Normal distribution with standard deviation of 0.3. We also randomly generated
the latent variables according to a standard Normal distribution to feed into the VAEs for
the spatial and temporal Gaussian processes. 1349 events were generated in total.

We then did inference on the data using SVI. The results are shown in Figures 1, 2, 3,
and 4 for comparison between the true values and the posterior distributions of those
parameters. The posterior distributions of the trigger function parameters were very close
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Figure 1. Posteriors for trigger parameters for the Cox Hawkes simulation with covariates. The red lines
represent the true parameter values.

to centered on the true value (Figure 1). In addition, the temporal background intensity
matched the true temporal background (Figure 3). The same can be said for the spatial
background (Figure 4). Lastly, the spatial covariate weights, while not 100% correct every
time always showed the correct direction (Figure 2). Furthermore, the true values were
included within the bounds of the posterior distributions each time.

All models are wrong, but some are useful. To check the usefulness of the Cox Hawkes
model, we generated data from the posterior mean of the !t on the Chicago shooting data
(see details in the next section about real data !tting using the model) to see if it looked
similar to the observed data (compare Figure 5 with Figure 6(a) with actual spatial data).

Note that BSTPP enables simulation for all models in its purview. While the Gaussian
processes in the Cox and Cox Hawkes models are theoretically continuous, in practice
they are piece-wise constant grids. Therefore simulation involves simulating the number of
points occurring on the space-time region of interest (Poisson according to the intensity on
the region) and then generating those points uniformly on the region. Self-exciting points
are then generated using the immigration interpretation of the Hawkes process. In any of
the models, the command to simulate a realization is model.simulate(). If no parameters
are given for the simulation, the parameters for the simulation are set to the posteriormean
(this assumes inference has been done).

5. Illustration using Chicago shootings data

We further examined the package by applying it to reported shootings in Chicago in
2022.3 We used demographic information for the community areas in Chicago as spa-
tial covariates.4 We will illustrate the basic !tting features, model metrics, trigger function
options, spatial covariates, and !nally the visualization capabilities of the package.
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Figure 2. Posteriors for covariate weights for the Cox Hawkes simulation with covariates. The red lines
represent the true parameter values.

5.1. Basic model !tting

To sample the posterior using numpyro’s NUTS sampler, we provided the function
model.run_mcmc(). There is also the ability to use model.run_svi() using numpyro’s SVI
optimization with a multivariate Normal distribution as a guide. Details on the optional
parameters of these functions can be seen in the API documentation and numpyro
documentation.

A simple script running the model on Chicago shooting data is shown at the end of this
session. The event data (contained in data[’events_2022’]) is a pandas DataFrame with
location (X and Y) and time (T) columns. The boundaries data (data[’boundaries’] is a
GeoPandas GeoDataFrame, which contains the boundaries of the city of Chicago. The
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Figure 3. Temporal background intensity for theCoxHawkes simulation. The true function ft(t) is shown
in the left plot. Right plot shows themeanmeanposterior predictive for ft(t) in blue and the 90%credible
interval in the yellow shaded area, with true time stamps of the events on the x-axis. (a) True background
temporal function ft and (b) Estimated background temporal function ft .

Figure 4. This figure shows the spatial background intensity for the Cox Hawkes simulation with spatial
covariates. The true and estimated and spatial intensities are almost indistinguishable. (a) The true spa-
tial background intensity and (b) The estimated spatial background intensity with and with out events
overlayed.

covariate data (data[’covariates’] is also a GeoDataFrame and includes all columns speci-
!ed in column_names. The rest of the arguments in the Hawkes_Model are priors for the
various parameters de!ned using numpyro distributions.

1 data = load_Chicago_Shootings()
2 column_names = [’UNEMP_DENS’,’MEDINC’,’MED_HV’,’assoc_plus’,’VACANT_DEN’,
3 ’VAC_HU_pct’,’HCUND20K_L’,’POP_DENS’,’CT_SP_WCHI’]
4 model = Hawkes_Model(data[’events_2022’],
5 data[’boundaries’],True,
6 spatial_cov=data[’covariates’],cov_names = column_names,
7 a_0=dist.Normal(1,10), alpha = dist.Beta(20,60),
8 beta=dist.HalfNormal(2.0)
9 )
10 model.run_svi(lr=0.02,num_steps=10000)



JOURNAL OF APPLIED STATISTICS 11

Figure 5. Simulation of Chicago shooting data from the posterior mean. The red markers are the simu-
lated locations of the gunfire. The simulation looks reasonably similar to the actual data, so there are no
red flags from this check.

Figure 6. Cox Hawkes background intensity visualized. (a) Spatial background intensity for Chicago
shooting reports with actual event locations plotted on the right and (b) Temporal background intensity
with 90% credible interval for Chicago shooting data. t is the day of year in 2022.

5.2. Model metrics

Comparingmodels can be di$cult where temporal inhomogeneity ismodeled. The tempo-
ral Gaussian process cannot be trivially extended outside the study time without additional
assumptions. Further, cross-validation is not possible due to the self-excitation, which
relies on past events. Because of this, our default is to rely on internal validation. We chose
expected AIC. For notational simplicity, let θ denote the parameters of the model, and k
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Table 1. Model performance on 2023 shooting data.

Cox Hawkes Hawkes Cox SEA regression

Log Expected Likelihood 7510.5 7446.2 7226.5 5213.3

be the number of parameters, then

Expected AIC = Eθ

[
2k − 2)(θ̂)

]
. (9)

Since we cannot compute this expectation exactly, we estimate it by Monte Carlo methods
according to the following equation where S is the number of samples drawn and θ s is a
particular sample,

Expected AIC ≈ 1
S

S∑

s=1
2k − 2)(θ s). (10)

You can get the expected AIC by calling model.expected_AIC().
If the temporal process is assumed to have a seasonal pattern to it, the learned Gaus-

sian process may be used to apply to next cyclic period for testing. This is true in the case
of Chicago shootings data. We assume that the temporal Gaussian process represents sea-
sonal changes in shooting frequency.We tested ourmodels on the next year of shootings in
Chicago (2023). To evaluate their predictive performance we used themetric Log Expected
Likelihood. Let y denote the training data, and ỹ denote the test data.

Log Expected Likelihood = log
(∫

p
(
ỹ | θ

)
p
(
θ | y

)
dθ

)
(11)

In a similar manner to expected AIC, we estimate Log Expected Likelihood by a sample
mean,

Log Expected Likelihood ≈ log

(
1
S

S∑

s=1
p
(
ỹ | θ s

)
)

(12)

This can be calculated by model.log_expected_likelihood(data[’events_2023’]). The
results are shown in Table 1. The Cox Hawkes model performed the best due to its
expressiveness. The SEAmodel had very limited #exibility and therefore performed poorly.

5.3. Trigger function

The form of the trigger function impacts the modeling ability of a Hawkes model signif-
icantly. Because of this it is important to allow #exibility in its form. The BSTPP package
provides some basic trigger functions, but also allows users to de!ne their own by extend-
ing the Trigger class. They are required to implement the following class methods when
extending the Trigger class: compute_trigger which simply computes the trigger function,
compute_integral which computes the de!nite integral of the trigger given bounds, and
get_par_names returns the names of the parameters for the trigger.Usersmay have asmany
parameters as necessary so long as they set priors for them in the model constructor and
provide a list of their names. Code for the trigger computationsmust use jax.numpy. Spatial
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Figure 7. Trigger parameter posterior distributions for Cox Hawkes model on Chicago shooting data.

and temporal parts of the trigger function must be separable and also must be well de!ned
probability density functions. To illustrate a user de!ned trigger function, we coded class
spatial_double_exp for the spatial trigger function for the Chicago shootings data. This
trigger mechanism signi!cantly improved model performance. The Log Expected Likeli-
hood increased to 7807.6. Additionally, the reproduction rate decreased to approximately
0.15, which is very similar to results in [4] for the city of Chicago.

BSTPP provides several plotting capabilities for the trigger function. To plot the
posteriors for the trigger parameters and get a tabular summary of the outputs use,
model.plot_trigger_posterior(). This will provide a histogram (Figure 7) or a trace
plot. model.plot_trigger_time_decay() will visualize the decay of the trigger with time
by plotting several curves sampled from the posterior temporal trigger parameters.
model.plot_prop_excitation() will plot a histogram of the posterior of the proportion of
the intensity due to self-excitation.

5.4. Spatial covariates

BSTPP also has plotting capabilities for spatial covariates. model.cov_weight_post_sum-
mary() works similarly to model.plot_trigger_posterior() (see Figure 8). These weights
indicate how a covariate in#uences the likelihood of events occurring.

Covariate weights vary signi!cantly depending on whether spatially correlated errors
are part of the model. Because of this, SAE models cannot be relied upon when spatially
correlated errors are an appropriate assumption. Table 2 summarizes the covariate weights
for several di"erent models. The SEAmodel is most similar to the Hawkes model, because
neither assumes any spatially correlated error in the regression. The Cox Hawkes and Cox
models have more similar regression coe$cients. The Gaussian processes seem to have a
regularizing e"ect on the regression. There are some highly correlated variables (median
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Figure 8. Covariateweight posterior distributions for CoxHawkesmodel on Chicago shooting datawith
the given covariate names as titles. The covariates correspond to the covariates in the table in order.

income and median house value, and house and land vacancy) that have opposite signs of
weight values in the Hawkes and SEA regression models, but for the most part the same
sign with lower magnitude in the Cox and Cox Hawkes models (Table 2).

We tried the model with and without spatial covariates for our model with the best
trigger function (see Section 5.3) and compared the performance with the test data (see
Section 5.2). The model with spatial covariates performed better: 7807.6 to 7476.5 log
expected likelihood on 2023 data, and−19,106.5 to−18,368.5 expected AIC for 2022 data.

5.5. Temporal and spatial visualization

model.plot_temporal() will plot the posterior mean of the temporal Gaussian process and
the 90% con!dence interval. Figure 6(b) clearly displays a higher intensity in the summer
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Table 2. Posterior mean of covariate weights to the second decimal place.

Cox Hawkes Hawkes Cox SEA regression

Unemployment density 0.31 0.40 0.38 0.29
Median income 0.0 −0.38 0.01 −0.44
Median house value −0.08 0.46 −0.17 0.45
Percentage of population
with associates degrees or
higher

−0.13 −0.27 −0.09 −0.26

Vacant land density 0.11 −0.10 0.09 −0.05
Percent of housing units
vacant

0.09 0.47 0.03 0.41

Households with less than
20% of income allocated to
housing

0.10 0.07 0.12 0.09

Population density 0.49 0.39 0.46 0.37
Single parent with child
homes density

−0.15 −0.06 −0.15 0.04

months. This is in accordance with the well established fact that the violent crime rate is
higher in hotter weather [17,20]. A model with constant temporal intensity (like the SEA
model), cannot capture this insight.

model.plot_spatial() will plot the posterior mean of the spatial background. It also
overlays the plot with observed data (see Figure 6(a)).

6. Conclusion

Spatiotemporal point processmodels are a powerful family ofmodels, boastingmuchmore
#exibility than the commonly used SEA method, to explain the occurrence of events in
space and time. However, their complexity makes it di$cult and time consuming to work
with, in the absence of software libraries designed for this purpose. BSTPP provides a #ex-
ible user-friendly interface for working with thesemodels. The expressive pre-trained VAE
included in the package makes inference much faster.

Even so, there are several features which are worth considering in future work. Cur-
rently, spatial and temporal parts of the trigger function must be separable. Also, changing
the hyperpriors on the Gaussian processes requires retraining the VAEs, which could be
improved by using a CVAE [32]. Additionally, because shootings and crimes in general
often occur on the street or near the street, it may be interesting to consider the shootings
in Chicago as occurring on a linear network (roads in this case). This would allow us to
bring in additional information about the street and increase the spatial accuracy. Future
research could apply and extend the R package stlnpp for the Chicago shootings dataset
[25].

Notes

1. Code is hosted at https://github.com/imanring/BSTPP
2. Note that it is straightforward to consider a three dimensional (or higher) spatial Gaussian

process if desired.
3. https://data.cityofchicago.org/Public-Safety/Chicago-Shootings/fsku-dr7m
4. https://datahub.cmap.illinois.gov/maps/2a0b0316dc2c4ecfa40a171c635503f8/about

https://github.com/imanring/BSTPP
https://data.cityofchicago.org/Public-Safety/Chicago-Shootings/fsku-dr7m
https://datahub.cmap.illinois.gov/maps/2a0b0316dc2c4ecfa40a171c635503f8/about
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Appendices

Appendix 1. Chicago shootings model results
The results for the Hawkes and Log Gaussian Cox models are shown in this appendix. The
Hawkes model assumes a constant temporal background/immigrant process, so there is no plotting
functionality enabled for that.
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Figure A1. Hawkes model results for Chicago shooting data. (a) Hawkes Spatial covariate background
and (b) Trigger parameter posteriors.

Figure A2. Log Gaussian Cox Process spatial intensity for Chicago shootings data. Events are added to
the right plot.

It is clear to see that the Hawkes model provides a much less smooth background intensity:
compare Figures A1(a) and A2. The high reproduction rate helps account for temporal and spatial
inhomogeneity.
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Figure A3. Log Gaussian Cox Process temporal intensity with 90% credible interval. t is the day of the
year in 2022. Event times are plotted in red at the bottom of the figure.

Appendix 2. Demo code

1 from bstpp.main import LGCP_Model, Hawkes_Model, load_Chicago_Shootings
2 import numpyro.distributions as dist
3 import numpy as np
4 import matplotlib.pyplot as plt
5 #set seed for reproducability
6 np.random.seed(16)
7 data = load_Chicago_Shootings()
8 column_names = [’UNEMP_DENS’,’MEDINC’,’MED_HV’,’assoc_plus’,’VACANT_DEN’,
9 ’VAC_HU_pct’,’HCUND20K_L’,’POP_DENS’,’CT_SP_WCHI’]
10 # Will produce a warning because we are using latitude, longitude coordinates instead
11 # of geometrically projected coordinates. The area that we are looking at is small
12 # enough that it doesn’t matter if we are using the geometric projection though.
13 model = Hawkes_Model(data[’events_2022’],#spatiotemporal points
14 data[’boundaries’],#Chicago boundaries
15 365,#Time frame (1 yr)
16 True,#use Cox as background
17 spatial_cov=data[’covariates’],#spatial covariate matrix
18 cov_names = column_names,#columns to use from covariates
19 a_0=dist.Normal(1,10), alpha = dist.Beta(20,60),#set priors
20 beta=dist.HalfNormal(2.0),sigmax_2=dist.HalfNormal(0.25)
21 )
22 # trains the model using Stochastic Variational Inference
23 # !! IMPORTANT !! run_svi first trains the variational distribution and then
24 # samples the variational distribution to be consistent with mcmc methods.
25 model.run_svi(lr=0.02,num_steps=15000)
26 print("Log Expected Likelihood:",
27 model.log_expected_likelihood(data[’events_2023’]))
28 print("Expected AIC:",model.expected_AIC())
29 model.plot_prop_excitation()
30 plt.show()
31 model.plot_trigger_posterior(trace=False)
32 plt.show()
33 model.plot_trigger_time_decay()
34 plt.show()
35 model.plot_spatial(include_cov=True)
36 plt.show()
37 model.cov_weight_post_summary(trace=True)
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38 plt.show()
39 from bstpp.trigger import Trigger
40 import jax.numpy as jnp
41 # Defining a custom trigger function to illustrate the process
42 class spatial_double_exp(Trigger):
43 def compute_trigger(self,pars,dif_mat):
44 return jnp.exp(-jnp.abs(dif_mat).sum(axis=0)/
45 pars[’Lambda’])/(2*pars[’Lambda’])**2
46 def compute_integral(self,pars,limits):
47 x_limits = limits[0] #shape [2,n]
48 y_limits = limits[1] #shape [2,n]
49 x_int = 1-0.5*jnp.exp(-jnp.abs(x_limits[0]/pars[’Lambda’])) - \
50 0.5*jnp.exp(-jnp.abs(x_limits[1]/pars[’Lambda’]))
51 y_int = 1-0.5*jnp.exp(-jnp.abs(y_limits[0]/pars[’Lambda’])) - \
52
53
54 0.5*jnp.exp(-jnp.abs(y_limits[1]/pars[’Lambda’]))
55 return x_int*y_int
56 def simulate_trigger(self,pars):
57 return np.random.laplace(size=2,scale=pars[’Lambda’])
58 def get_par_names(self):
59 return [’Lambda’]
60 # same as before except with new trigger!
61 model = Hawkes_Model(data[’events_2022’],#spatiotemporal points
62 data[’boundaries’],#Chicago boundaries
63 365,#Time frame (1 yr)
64 True,#use Cox as background
65 spatial_cov=data[’covariates’],#spatial covariate matrix
66 cov_names = column_names,#columns to use from covariates
67 a_0=dist.Normal(1,10), alpha = dist.Beta(20,60),#set priors
68 beta=dist.HalfNormal(2.0),Lambda=dist.HalfNormal(0.5),
69 spatial_trig=spatial_double_exp
70 )
71 model.run_svi(lr=0.02,num_steps=15000)
72 lel = model.log_expected_likelihood(data[’events_2023’])
73 print(f"Log Expected Likelihood: {lel}")
74 eaic = model.expected_AIC()
75 print(f"Expected AIC {eaic}")
76 model.plot_trigger_posterior(trace=True)
77 plt.show()
78 model.plot_trigger_time_decay()
79 plt.show()
80 model.plot_spatial(include_cov=True)
81 plt.show()
82 model.plot_temporal()
83 plt.show()
84 model.cov_weight_post_summary()
85 plt.show()
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