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Abstract—Multivariate Hawkes processes are a popular model
for estimating Granger causality from event sequences on net-
works. In this work we show that under certain parameter
regimes, such as those that arise when modeling infectious disease
transmission, false discovery of cross-excitation becomes a major
problem. We first provide evidence through simulation that
substantial spurious cross-excitation is present when the largest
eigenvalue of the productivity matrix approaches the critical
value of 1, which leads to multicollinearity. We then propose and
compare several methods for mitigating false cross-excitation,
through different types of regularization and staged estimation.
Our experimental results include both synthetic data as well as
transmission data from the Covid-19 pandemic.

Index Terms—Multivariate Hawkes process, Granger causality,
multicollinearity, Covid-19

I. INTRODUCTION

Hawkes processes [1] are point process models of event
clustering with application to a variety of phenomena, includ-
ing seismology [2], [3], finance [4]–[7], and crime modeling
[8], [9]. The main advantage of Hawkes processes over other
point processes, such as stationary Poisson processes, is their
ability to model how past events influence current events of
the process due to their memory property. Furthermore, they
exhibit a natural notion of Granger causality due to the fact that
occurrences of events in the past may increase the probability
of events in the future [10].

In this paper, we consider the multivariate Hawkes process
(MHP), which has recently been proposed as a method for
describing the transmission of infectious diseases across dif-
ferent locations and over time [11]–[13]. The main objective
will be to estimate Granger causality across spatial locations
through the productivity matrix of the Hawkes process. Previ-
ous work [14] has shown that the Granger causality structure
of MHPs is fully encoded in the kernel function of the model.
Suppose we have a system of M interacting point processes,
H = (Ht)0≤t≤T =

(
H1

t ,H2
t , . . . ,HM

t

)
0≤t≤T

, that occur in the
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time interval [0, T ], with M > 2 the number of processes, each
Hi consisting of points {sij}, and with conditional intensity

λi(t) = µi +

M∑
j=1

∑
k:sjk<t

ϕij(t− sjk) (1)

where µi > 0 corresponds to the background rate, and ϕ
describes the kernel function. Then we can say that at a given
time t, the component Hj

s Granger-causes Hi
t if and only if

the kernel function ϕij(t− s) is not vanishing. We adopt this
approach to study the dynamics of epidemic diseases between
different locations.

The Covid-19 pandemic has sparked a great deal of interest
in point process modeling of infectious disease [15]–[20]. For
instance, [21] proposed three basic models that can be fit to
Covid-19 data emerging from local and national governments.
The authors in [22] introduced a novel epidemic model using a
latent Hawkes process with temporal covariates for modelling
the infections. In this paper, we model the dynamics of
epidemic diseases between different locations using the afore-
mentioned MHPs. The aim is to infer the Granger-causality
that is implicitly encoded in the kernel function, and more
specifically in the productivity matrix. The data are spatial-
temporal, where the total number of daily infections in every
specific location is recorded. Although a variety of estima-
tion methods have been proposed, the task is nevertheless
extremely challenging. Indeed, for the case of data where the
precise occurrence times of the individual points are observed,
the parameters can be fit by maximum likelihood estimation
(MLE) [23] and the resulting estimates are known to have
desirable asymptotic properties [24]. Furthermore, even if the
model is missing some relevant covariates, given that their
effect is small, the MLE will still be consistent under general
conditions [25]. The triggering function can also be estimated
non-parametrically [26]–[28]. Bayesian methods can also be
used to estimate parameters and quantify uncertainty in the
Hawkes processes models [29], [30]. However, for epidemic
data in which data consist of daily counts rather than precise
individual occurrences times, the Hawkes parameters can be



efficiently fit by least squares, applying methods from time
series theory to the bin-count sequences of mutivariate point
process data [31], [32].

However, for the case considered here, i.e., spatio-temporal
data where in each location, the total number of cases in that
location is recorded, and where individuals in one location
may infect individuals in another location, both MLE and
least squares perform poorly. Indeed, both methods appear
to grossly overestimate the cross-productivity, i.e., the rate
at which those from one location infect others at a different
location. We provide evidence that one issue that arises is
multicollinearity: if, for instance, cases are rising in California
and New York at similar rates, then the model tends to
overestimate the rate at which those in California are infecting
those in New York and vice versa, since the model, a priori, has
no reason to suspect that those in New York are any less likely
to be infected by Californians than by other New Yorkers. Our
goal is to mitigate this problem, i.e., false cross-excitations
in multivariate Hawkes processes for epidemic diseases using
data involving spatial components (different locations) and
temporal ones (total daily infections at given individual times).
We propose seven different estimation methods. Furthermore,
we run three experiments. The first two are based on synthetic
data that mimic epidemic disease dynamics between different
locations, while the third one relies on real data of Covid-19 in
which the total number of daily infections is recorded between
four counties in California, USA, namely San Diego, San
Francisco, Sacramento and San Jose. The paper is organized
as follows: Section II briefly describes the Hawkes model we
will be using to fit the data. Section III explains in full detail
the seven methods used for our estimation. A short analysis
of multicollinearity is provided in Section IV. The issues of
over-fitting and parameter tuning are examined in Section V.
The various methods are applied to both simulated and real
data in Section VI 1 , followed by a discussion of the results
in Section VII.

II. MODEL

The model considered throughout is the MHP, whose con-
ditional intensity (1) in the discrete case can be rewritten as

λi(t) = µi +

M∑
j=1

t∑
s=0

ϕij(t− s)N(s). (2)

Here µi is the background rate (considered time independent)
for points of type i, where i in this context refers to a location.
ϕ is a density function i.e., non negative and integrating to
1, called the triggering density, and N is the number of
new infections which varies from day to day. For infectious
disease transmission, which can have an incubation period,
one possibility for the triggering density governing the serial
interval between cases is the Weibull distribution:

ϕij(t) = Rij

[
(1− p)t

β

− (1− p)(t+1)β
]
, (3)

1The code can be found at
https://github.com/younesszs/False-excitation-mitigation

where p is a real parameter satisfying 0 < p < 1 and β > 0 is
the shape parameter. The reproduction matrix, Rij , represents
the expected number of secondary cases at location i triggered
directly by an infection at location j.

The serial interval distribution of a disease is typically
assumed to be constant across locations, and therefore the
parameters β and p in the Weibull distribution can be es-
timated by superimposing the data into a univariate process
[33] and estimating the Weibull parameters with Stan [34].
Subsequently, with β and p already estimated, the reproduction
matrix can be estimated using a variety of regression based
approaches, which is the scope of the next Section.

III. METHODS

As discussed in the previous Section, we first estimate the
parameters, β and p, of a superimposed univariate Hawkes
process. This can be achieved by maximizing the likelihood
[23] through a Bayesian approach by sampling from the
posterior distribution given priors on the model parameters.
In the present case, we first maximize the likelihood function
of the Weibull parameters assuming the number of events per
day follows a Poisson distribution. For unknown parameters
θ, the log-likelihood function is given by,

l(θ) = log

T∏
t=0

λ(t)N(t)e−λ(t)

N(t)!
, (4)

where T is the length of the time window of observation.
Let L(θ) = maxθl(θ). Maximizing the log-likelihood (4) is
equivalent to maximizing its nominator. Thus

L(θ) = max
θ

log

T∏
t=0

λ(t)N(t)e−λ(t)

= max
θ

T∑
t=0

log
(
λ(t)N(t)e−λ(t)

)
.

(5)

Therefore, the maximum log-likelihood function can be writ-
ten as

L(θ) = max
θ

T∑
t=0

(N(t) log λ(t)− λ(t)) . (6)

We solve the optimization problem in Equation (6) using Stan.
We perform Hamiltonian Monte Carlo using 1000 samples.
The prior densities we use are

R ∼ beta(1, 1) , p ∼ beta(1, 1) (7)
µ ∼ cauchy(0, 5) , β ∼ cauchy(0, 5). (8)

The distribution Beta(1, 1) is a uniform distribution that
constraints the parameters p and R to be bounded between
0 and 1. The prior of Cauchy(0, 5) was chosen for µ and
β because we initially do not have much information about
them. Note that, in the aforementioned estimation, we are
superposing [33] the MHP into a single univariate Hawkes



process, which allows us readily to estimate the serial interval
distribution ϕ.

Next, with p and β fixed, we return to estimating the full
MHP. In particular, we use a regression framework to estimate
the reproduction matrix R. We compare several approaches
that we refer to as ”Linear estimate”, ”Ridge estimate”, ”Ridge
Diag estimate”, ”Elastic Net estimate”, ”Elastic Net Diag
estimate”, ”Staged1 estimate” and ”Staged2 estimate”.

A. Linear estimate

The first method we consider is linear regression for esti-
mating the reproduction matrix Rij and the baseline rates µi.
Note that, with p and β fixed, the MHP intensity can be seen
as obeying the linear model:

E(Ni(t)) = b0,i +

M∑
j=1

t∑
s=0

[
bij

(
(1− p)(t−s−1)β

− (1− p)(t−s)β
)
Nj(s)

]
.

(9)

Plugging in the observed event counts in place of their
expected value, this amounts to finding the best solution to
the linear equation

y⃗ ∼ b⃗X. (10)

That is, The length of the vector y⃗ of observed values is MT ,
where M is the number of nodes in the network and T is
the number of days. In the above linear model, the linear
regression coefficients b⃗ determine the baseline rate µi = b0,i,
and reproduction matrix Rij = bij . The predictor matrix X ,
which contains the Weibull kernel convolved with past event
counts, has shape MT ×M(M+1). Note that the intercept is
implicitly absorbed in the predictor matrix by adding a column
of 1’s to X . We thus estimate the coefficients b⃗ using least-
squares by minimizing

MSE =

MT∑
i=1

yi −
M(M+1)∑

j=1

xijbij

2

, (11)

where xij’s represent the elements of the predictor matrix X .

B. Penalized regression estimates

We next consider four penalized regression methods: Ridge,
Ridge Diag, Elastic Net and Elastic Net Diag.

Ridge regression consists of a L2 penalty on the coefficients
bij . L2 penalty is a technique used in machine learning to
mitigate the problem of over-fitting by adding a penalty term
to the loss function. The penalty term is the sum of the
squares of the model coefficients. The primary effect of L2
regularization is to effectively shrink the coefficients towards
zero, but unlike L1 regularization, it does not set them to
exactly zero. We also consider a modified Ridge regression,
which we call Ridge Diag, where we only penalize the off-
diagonal coefficients. For motivation, we return to the New
York and California scenario from the Introduction. In the case
of infectious diseases, it makes sense to have an informative
prior that anticipates more transmission within a particular

region than across distinct regions. Thus we penalize non-
zero off-diagonal coefficients, but not the diagonal coefficients.
The cost function that characterizes Ridge and Ridge Diag
estimates can be written as

MSE + λ

MT∑
i=1

M(M+1)∑
j=1

b2ijδij , (12)

where λ is a regularization parameter. Here δij is one in the
case of Ridge regression, and δij = 1i ̸=j in the case of Ridge
Diag.

Elastic Net and Elastic Net Diag have the same structure
as Ridge and Ridge Diag, respectively, illustrated in the
expression (12), except for the fact that now we use elastic net
regularization, that is, a combination of L1 and L2 penalties.
Thus the loss function is given by

MSE + (1− α)λ

MT∑
i=1

M(M+1)∑
j=1

b2ijδij

+ αλ

MT∑
i=1

M(M+1)∑
j=1

|bj |δij ,

(13)

where α is a mixing parameter that controls the balance
between the ridge and lasso penalties and should be between
0 and 1. In the case where α = 0 we retrieve the loss function
(12) i.e., ridge regression, whereas α = 1 corresponds to the
lasso loss function. Note that, for all our case studies, the
optimal value of the parameter α was determined using cross
validation.

C. Staged estimates

The last two estimation methods we use are denoted by
”Staged1” and ”Staged2”. They are named as such because
they utilize two stages to estimate the Hawkes parameters.
The first stage consists of independent linear regressions for
each node to estimate the diagonal elements of R:

yi(t) = b0 + bii

t∑
s=0

[
(1− p)(t−s−1)β

− (1− p)(t−s)β
]
Ni(s).

(14)

Then in the second stage the diagonal element estimates b̂ii
are fixed and the off-diagonal elements are estimated for the
entire MHP:

yi(t) =b0i +

M∑
j=1

t∑
s=0

[
bij

(
(1− p)(t−s−1)β

− (1− p)(t−s)β
)
Nj(s)1i ̸=j

]
+ b̂ii

t∑
s=0

[(
(1− p)(t−s−1)β

− (1− p)(t−s)β
)
Ni(s)

]
.

(15)



We refer to this method as ”Staged1”. Because ”Staged1”
tends to overestimate diagonals in the reproduction matrix,
we also consider a modified version, called ”Staged2”, where
we estimate an additional parameter γ which multiplies the
diagonal coefficients and allows for a global correction to the
diagonals:

yi(t) = b0i +

M∑
j=1

t∑
s=0

[
bij

(
(1− p)(t−s−1)β

− (1− p)(t−s)β
)
Nj(s)1i̸=j

]
+ γb̂ii

t∑
s=0

[(
1− p)(t−s−1)β

− (1− p)(t−s)β
)
Ni(s)

]
.

(16)

Like the penalized regression methods with diagonal modi-
fications, the idea behind the staged estimates is that most
transmission should happen within a geographical region.
Then in the second stage, off-diagonal transmission is fit to
the residual error of the diagonal model, the idea being that
the estimated transmission between two different geographical
areas is only permitted to account for additional excitation
after local transmission has already been accounted for.

IV. THE CHALLENGE OF MULTICOLLINEARITY

In this section we briefly discuss the challenge of mul-
ticollinearity, which is a major problem when dealing with
epidemic diseases. In the case of spatio-temporal data, both
MLE and least squares tend to result in vast overestimates
of the rate at which the disease spreads between different
locations. Multicollinearity is a phenomenon that occurs when
two or more predictor variables in a regression model are
highly correlated. This is problematic because it makes it
difficult to determine the exact effect of each independent
variable due to the shared variance among the independent
variables. Multicollinearity is an issue with MHPs, as features
in Equation 9 are determined by lagged event counts convolved
with the triggering kernel. In Fig. 1 on the left, we plot
the correlation matrix of MHP features for one simulation.
Note that there are blocks of feature pairs whose correlation
coefficient is near 1.

To better understand multicollinearity in MHPs, we run
100 simulations with different reproduction matrices R. We
find that collinearity gets worse as the largest eigenvalue of
the reproduction matrix approaches or exceeds 1. In Fig. 1
on the right, we plot the largest correlation across feature
pairs for each simulation vs the largest eigenvalue of the
reproduction matrix. We observe that the maximum correlation
across feature pairs approaches 1 as the maximum eigenvalue
approaches 1.

V. THE CHALLENGE OF OVER-FITTING

A closely related challenge in estimating cross-excitation is
over-fitting. Particularly when comparing models with differ-
ent numbers of parameters, it is important to watch out for
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Fig. 1. Collinearity increases as the largest eigenvalue of the reproduction
matrix increases. To show this, we simulate 100 MHPs with different repro-
duction matrices and compare feature correlation with the largest eigenvalue.
On the left, we plot the correlation matrix among features for one of the
simulations. MHP features are correlated as they determined by lagged event
counts convolved with the triggering density. On the right, we plot the largest
correlation coefficient between pairs of features against the largest eigenvalue
of the reproduction matrix. Note that as the largest eigenvalue approaches 1,
then there are a pair of features with correlation that also approaches 1.

the possibility that one model may offer superior fit to the
training data to which it was fitted, but significantly worse on
external, testing data. Our approach to mitigating this problem
is to introduce different regularizations on the diagonal and
off diagonal estimates of the reproduction matrix, along with
staged estimates that first fit the diagonals and then fit the
off-diagonals to residual error.

For the linear estimate without regularization, we observe
that, like multicollinearity, over-fitting gets worse as the largest
eigenvalue of the reproduction matrix approaches 1. As in
the previous section, we run 100 simulations with different
reproduction matrices R. We split the data in time where the
first half of the time interval is used for training the linear
estimate in Equation 9. We then evaluate training error, as
well as test error on the held out second half of the data.

In Fig. 2, we plot the training error and the test error vs the
largest eigenvalue of the reproduction matrix. While the train
error does increase with the largest eigenvalue, the testing error
explodes as the largest eigenvalue approaches and exceeds 1.
We also plot the ratio of the training vs testing MSE, which
approaches zero as the largest eigenvalue approaches 1.

VI. EXPERIMENTS

In this section we compare the methods outlined in Section
III on two synthetic datasets, along with daily COVID-19 case
counts from several California counties in 2020.

A. Cycle experiment

In our first experiment, we generate synthetic MHP events
on a network with (M = 5) nodes. We use T = 300 days for
the time window of observation and for the Weibull parameters
we set p = 0.05 and β = 2.0. The reproduction matrix R
follows a cyclic pattern with diagonal Rii = 0.8 and off-
diagonal elements Rij = 0.05 when mod(|i− j|/3) = 1 (and
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Fig. 2. Train and test error of linear regression applied to 100 simulations
of MHPs with different reproduction matrices R. Upper left: Train MSE vs
the largest eigenvalue of R for each of the 100 simulations. Upper right:
Test MSE vs the largest eigenvalue of R for each of the 100 simulations.
Bottom: Ratio of the the train-test MSE vs the largest eigenvalue for 100
MHP simulations.
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Fig. 3. Conditional intensity of simulated 5-dimesional Hawkes process with
a Weibull distribution and a cyclic reproduction matrix R given in equation
(17).

zero otherwise). The reproduction matrix therefore is given
by:

RGround truth
Cycle =


0.8 0.05 0 0 0.05
0.05 0.8 0.05 0 0
0 0.05 0.8 0.05 0
0 0 0.05 0.8 0.05

0.05 0 0 0.05 0.8

 . (17)

The M = 5 intensities of one simulation of this process
is shown in Fig. 3. We note that the intensities are highly
correlated due to having similar parameters and having cross-
excitation through the reproduction matrix.

We next run 1000 simulations to estimate the reproduction
matrix R and compare the methods discussed in Section III,
i.e., the linear estimate, the penalized estimates and the staged
estimates. As described earlier, we first fit the Weibull param-
eters p and β using superposition and Stan. The estimated

TABLE I
ESTIMATED VALUES OF THE WEIBULL DISTRIBUTION PARAMETERS p

AND β AND THEIR RESPECTIVE 95% CONFIDENCE INTERVALS FOR THE
CYCLE EXPERIMENT.

p β
0.079 (0.026, 0.157) 1.807 (1.316, 2.377)

TABLE II
MEAN DIAGONAL AND OFF-DIAGONAL ESTIMATIONS FOR THE

REPRODUCTION MATRIX R USING ESTIMATION MODELS AS WELL AS
THEIR RESPECTIVE MEAN SQUARED ERROR (MSE) FOR THE TRAINING

AND TESTING SETS FOR THE CYCLE EXPERIMENT OVER 1000
SIMULATIONS. REMIND THAT THE GROUND TRUTH VALUES FOR THE

DIAGONAL AND OFF-DIAGONAL FOLLOW
(
RGROUND TRUTH

CYCLE

)
diag

= 0.8 AND(
RGROUND TRUTH

CYCLE

)
OFF-DIAG

= 0.05, RESPECTIVELY. THE BOLDED VALUES
ARE THE BEST ONES IN EACH COLUMN.

Method Train MSE Test MSE R Diagonal R Off diagonal
Linear 2.305 14.656 0.133 0.208
Ridge 2.727 6.228 0.471 0.100

Ridge Diag 2.687 6.099 0.746 0.029
Elastic Net 2.664 6.073 0.661 0.059

Elastic Net Diag 2.702 6.101 0.747 0.027
Staged1 2.554 7.523 0.815 0.051
Staged2 2.337 15.293 0.000 0.219

parameters are given in Table I, and we note that the 95%
confidence intervals contain the true values.

In Fig. 4, we plot the graph representations of the adjacency
matrix for each method, using solid black edges when the
estimate Rij > .1 and dashed blue edges when Rij ∈ (.02, .1].
Here we observe that linear regression results in a fully
connected graph, and thus exhibits a high amount of false
cross-excitation. Elastic net provides a graph estimate closest
to the ground truth graph, with only one false edge.

In Table II, we report the mean value of the diagonal
and off diagonal elements of the reproduction matrix R for
the 1000 simulations, in addition to the mean squared error
characterizing the different models used. As to be expected,
Linear regression has the lowest training error due to the lack
of parameter penalization. However, Elastic Net has the lowest
test MSE. Staged1 is the best method at recovering the true
model parameters for the reproduction matrix, thus there seems
to be a tradeoff between Elastic Net and Staged1 regression.

B. Karate Club experiment

In the next experiment, we generate synthetic data from
a MHP simulated on the karate club graph introduced by
Zachary [35]. The network is formed from a study carried
out from 1970-1972, where social interactions between 34
karate club members were recorded. As in Section VI-A, we
generate MHP data on the karate club graph with M = 34
nodes and with the Weibull distribution described in Section
II. The simulated events are generated within a time window of
300 days. For the reproduction matrix, we use the parameters:(

RGround truth
Karate club

)
diag

= 0.15(
RGround truth

Karate club

)
off-diag = 0.012.

(18)
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Fig. 4. Graphs corresponding to each estimation of R for the cycle exper-
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Fig. 5. Conditional intensity of simulated 34-dimesional Hawkes process
with a Weibull distribution and reproduction matrix R yielded from Zachary’s
karate club graph.

The conditional intensity given by Equation (2) for one
simulation is plotted in Fig. 5.

We first estimate the Weibull distribution parameters p and
β using Stan, and the results are presented in Table III. We
again note that the 95% confidence intervals contain the true
values.

In Fig. 6, we plot the graph representations of the adjacency
matrix for each method, using solid black edges when the
estimate Rij > .1 and dashed blue edges when Rij ∈ (.02, .1].
We again observe that linear regression results in a near fully
connected graph. As before, Elastic net provides a graph
estimate closest to the ground truth graph, however still with a
high degree of false cross-excitation. Thus even for moderate
sized graphs, uncovering causal connections in MHPs may
not be possible in certain parameter regimes, even with a high
amount of regularization.

In Table IV, we report the mean value of the diagonal
and off diagonal elements of the reproduction matrix R for
the 100 simulations, in addition to the mean squared error

TABLE III
ESTIMATED VALUES OF THE WEIBULL DISTRIBUTION PARAMETERS p

AND β AND THEIR RESPECTIVE 95% CONFIDENCE INTERVALS FOR THE
ZACHARY’S KARATE CLUB EXPERIMENT.

p β
0.041 (0.003, 0.142) 2.317 (1.191, 3.571)
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Fig. 6. Estimated reproduction matrix R for each method applied to the
karate network MHP. The reproduction adjacency matrix R is visualized as
a network using solid black edges when the estimate Rij > .1 and dashed
blue edges when Rij ∈ (.02, .1].

characterizing the different models used. Here we again ob-
serve that Elastic Net has the lowest test MSE. Again we
see that a method that treats the diagonals and off-diagonals
differently best recovers the true reproduction matrix, this time
with diagonal Elastic Net having the best performance.

C. COVID-19 California County Data

In our last experiment, we fit MHPs to Coronavirus 2019
(Covid-19) daily infection data from four different counties in
the state of California, USA during 2020. Data was obtained
from the NY Times Covid-19 Github repository2 . The
counties include San Diego, San Francisco, Sacramento and
San Jose and the daily infections were recorded for a period
of 100 days after March 10, 2020. The evolution of the case
count time series is shown in Fig. 7.

The CA COVID-19 data provides a good example of time
series of contagion processes that are highly correlated, yet
most transmission is realistically within each county rather
than across counties during this time period.

We estimate the off-diagonal and diagonal elements of the
reproduction matrix R using the different estimation models
described above. In this case, R is a 4 × 4 matrix in which
the off-diagonal elements Rij , i ̸= j represent the expected
number of secondary infections in county i directly caused
primary infections in county j. On the other hand, the diagonal
Rii represents the number of secondary infections in county i

2https://github.com/nytimes/covid-19-data



TABLE IV
MEAN DIAGONAL AND OFF-DIAGONAL VALUES FOR THE REPRODUCTION

MATRIX R USING DIFFERENT ESTIMATION MODELS AND THEIR
RESPECTIVE MEAN SQUARED ERROR (MSE) FOR THE TRAINING AND

TESTING SETS OVER 100 SIMULATIONS FOR THE KARATE CLUB
EXPERIMENT. THE GROUND TRUTH VALUES FOR THE DIAGONAL AND

OFF-DIAGONAL FOLLOW
(
RGROUND TRUTH

KARATE CLUB

)
diag

= 0.15 AND(
RGROUND TRUTH

KARATE CLUB

)
OFF-DIAG

= 0.012, RESPECTIVELY. THE BOLD VALUES
REPRESENT THE BEST VALUE IN EACH COLUMN.

Method Train MSE Test MSE R Diagonal R Off diagonal
Linear 0.337 369.910 0.000 0.186
Ridge 0.737 1.630 0.044 0.034

Ridge Diag 0.599 1.623 0.123 0.022
Elastic Net 0.659 1.597 0.040 0.029

Elastic Net Diag 0.651 1.624 0.157 0.015
Staged1 0.364 347.433 0.295 0.173
Staged2 0.337 370.870 0.000 0.186
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Fig. 7. Daily recorded new infected cases in the four California counties i.e.,
San Diego, San Francisco, Sacramento and San Jose over the period of 100
days. The recording started after March 10, 2020.

caused by a primary infection within the same county i, i.e.,
how the epidemic disease spreads from person to person within
San Diego for instance. Table V shows the estimated Weibull
parameters p and β using Stan, while Table VI summarizes
the resulting mean values of Rij i ̸= j, as well as the
corresponding MSE for each of the estimated models. As
before, Elastic Net has the lowest test MSE on the data.
While we do not know ground truth for Rij , the 0.138 cross-
transmission number for Elastic Net seems higher than what
might be expected during the lock down. The 0.065 estimate
given by diagonal Elastic Net is perhaps more plausible during
this time period.

VII. DISCUSSION

In this paper we investigated the task of fitting mutlivariate
Hawkes processes to discrete infectious disease count data on
networks. In the case of infectious diseases, a shared triggering
kernel is plausible and allows for regression based estimation
through superimposing the MHPs. However, these shared
triggering kernels are convolved with lagged event counts
to generate features for the regression, and by construction
these features are highly correlated. Thus multicollinearity and
over-fitting become problems when fitting discrete MHPs to
infectious disease data, especially as the largest eigenvalue

TABLE V
ESTIMATED VALUES OF THE WEIBULL DISTRIBUTION PARAMETERS p

AND β AND THEIR RESPECTIVE 95% CONFIDENCE INTERVALS FOR THE
CASE OF REAL COVID-19 DATA.

p β
0.0004 (0.0001, 0.001) 4.477 (3.843, 5.161)

TABLE VI
MEAN VALUE OF DIAGONAL AND OFF-DIAGONAL VALUES FOR THE

REPRODUCTION MATRIX R USING DIFFERENT ESTIMATION MODELS AND
THEIR RESPECTIVE MEAN SQUARED ERROR (MSE) FOR THE TRAINING

AND THE TESTING SETS FOR THE COVID-19 DATA.

Method Train MSE Test MSE R Diagonal R Off diagonal
Linear 117.567 4323.397 0.448 0.337
Ridge 183.470 809.936 0.411 0.175

Ridge Diag 182.832 800.446 0.647 0.071
Elastic Net 175.869 797.403 0.506 0.138

Elastic Net Diag 181.496 798.640 0.669 0.065
Staged1 121.448 3993.257 0.676 0.295
Staged2 120.373 4461.879 0.139 0.437

of the reproduction matrix exceeds 1 (which is the case
during a pandemic). False cross-excitation is estimated by this
regression approach, where transmission is predicted across
geographies that might not actually exist.

We explored several methods for mitigating false cross-
excitation. We find that standard regularization methods, in
particular Elastic Net, produce the lowest MSE on held out
data. Thus if the goal is short-term forecasting of infectious
disease counts, this approach will yield the most accurate
estimates. We note that these methods still have false cross-
excitation, however it is possible that pooling case counts
across nodes reduces variance (even though adding some bias)
and may yield improved forecasts even when the nodes are
independent.

However, if the goal is to recover true parameters of the
infectious disease, then methods that treat diagonal and off-
diagonal components of the reproduction matrix separately
may yield more accurate estimates. Here we find that diagonal
Elastic Net and Staged1 regression yielded the best results,
depending on the dataset.
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